

Continuously Reinforced Concrete Pavement (CRCP) Performance Curves

Prepared by

Carlos M. Chang, Ph.D., P.E.

Objectives

To present the new recalibrated PMIS
Continuously Reinforced Concrete
Pavement (CRCP) performance models to
TxDOT personnel in order to obtain
feedback.

Acknowledgment

Bryan Stampley, Project Director Jenny Li, CRCP Project Advisor

CRCP Panel of Experts

Abbas Mehdibeigi Darlene Goehl

David Wagner Elizabeth Lukefahr

Mike Alford Stacey Young

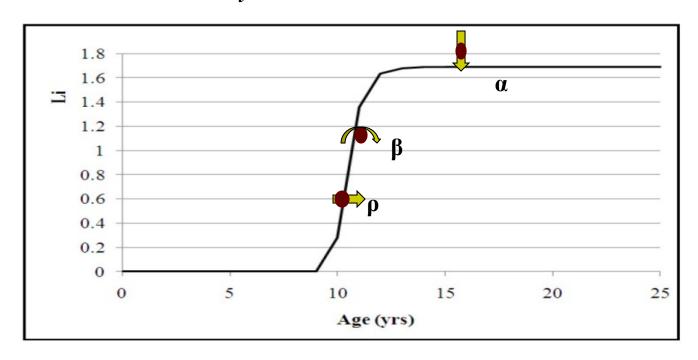
Ron Baker Tomas Saenz

Andrew Wimsatt Won Moon

Outline

- 1. Overview of CRCP Performance Models
- 2. Recalibration Procedure
- 3. Recalibrated Models
 - Spalled Cracks
 - Punchouts
 - ACP Patches
 - PCC Patches
 - Ride Score
- 4. Conclusions

Overview of CRCP Performance Models

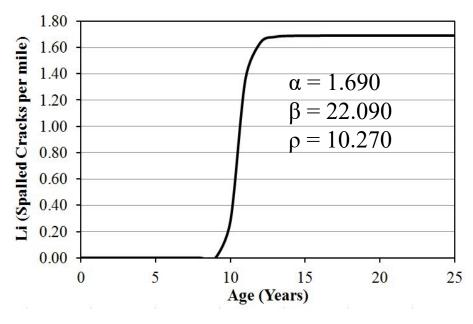


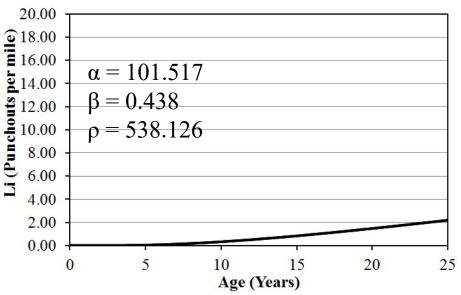
Performance Curve Parameters

$$L_{i}=lpha e^{-\left(rac{
ho\chi\sigmaarepsilon}{Age}
ight)^{eta}}$$

Performance Curve Parameters

- α: Alpha is a horizontal asymptote factor and represents the maximum amount that can be lost.
- β: Beta is a slope factor and represents the slope of the performance curve at its inflection point.
- ρ: Rho is a prolongation factor and describes how long the pavement will last.
- X: chi coefficient is a truck traffic factor for 18-k ESAL.
- ε: Epsilon is a climatic factor that controls the effect of rainfall and freeze-thaw cycles on performance.
- σ: Sigma is a subgrade support factor.

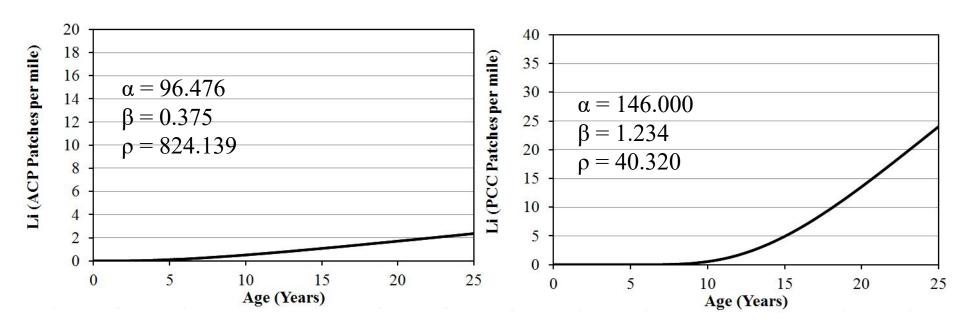




Current Performance Curves

Spalled Cracks

Punchouts



Current Performance Curves

ACP Patches

PCC Patches

Recalibration Procedure

PMIS Data

Performance curves were re-calibrated for CRCP distress types and ride score using PMIS data from years 1993-2010.

Expert opinion was used to refine the recalibrated models.

Recalibration Procedure

- 1. Extract pavement distress information from PMIS
- 2. Perform statistical analysis of the observed level of distress (Li) for each CRCP distress:
 - Spalled Cracks
 - Punchouts

- ACP Patches
- PCC Patches

Recalibration Procedure

- 5. Review the results and receive feedback from experienced District personnel to identify critical distress deterioration stages.
- 6. Filter outliers prior to regression analysis.
- 7. Perform calibrations using non-linear multiregression analysis.

Statistical Analysis for Distress Score and Ride Score

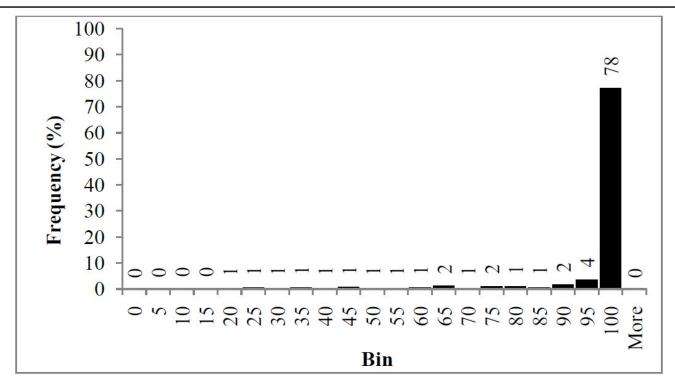
Statistical Analysis

- PMIS data were extracted for 25 TxDOT Districts from 1993 to 2010.
- 12,449 sections Statewide were included in the distress statistical analysis
- Box plots and Histograms were generated to study distress characteristics.

Distress Score Statistical Analysis

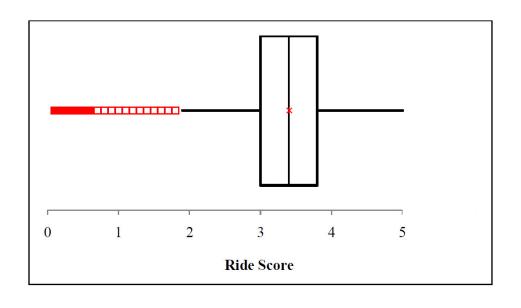
Li
91.37
20.07
100
1
100
99
100
83,936

Statistical Parameter and Box Plot for CRCP Distress Score, Statewide. 75% of the data have a score of 99 or higher.



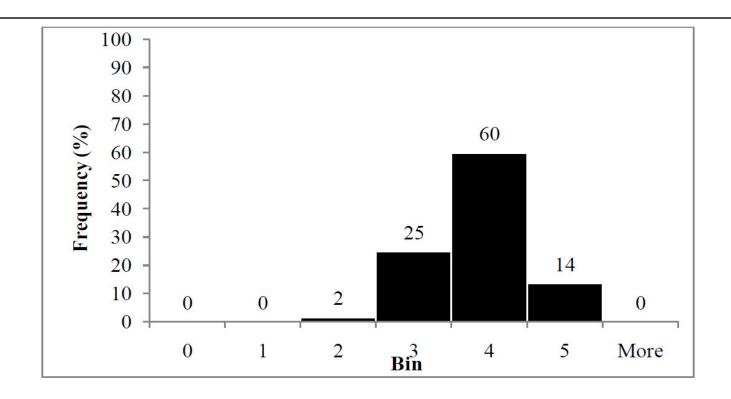
Distress Score Statistical Analysis

Relative Frequency Plot for CRCP Distress Score, Statewide. 78% of the Distress Score demonstrate to have a score of 100.



Ride Score Statistical Analysis

Statistical Parameter	Li
Mean	3.40
Standard Deviation	0.59
Median	3.4
Minimum	0.1
Maximum	5
1st Quartile	3
3rd Quartile	3.8
Frequency of Maximum	8

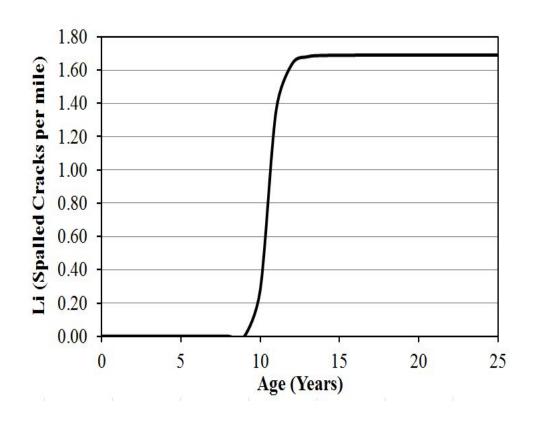


Ride Score Statistical Analysis

Most of the CRCP sections have ride score between 3 and 4.

Recalibrated Models

Spalled Cracks



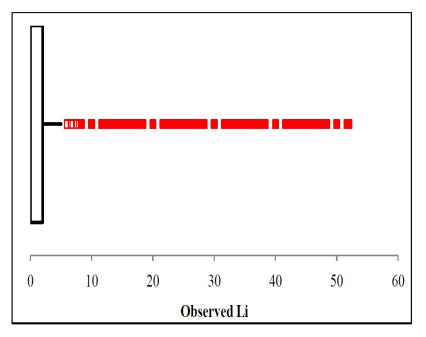
Current Spalled Cracks Model

Spalling develops around an age of 9 years.

Alpha
$$=1.69$$

Beta =
$$22.09$$

$$Rho = 10.27$$

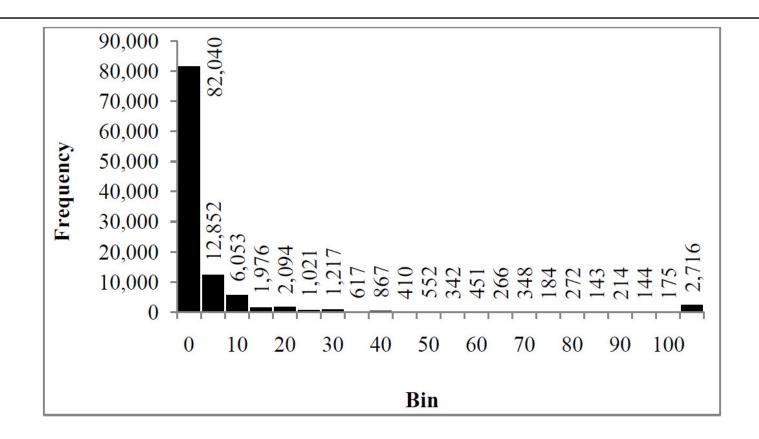


Statistical Analysis for Spalled Cracks

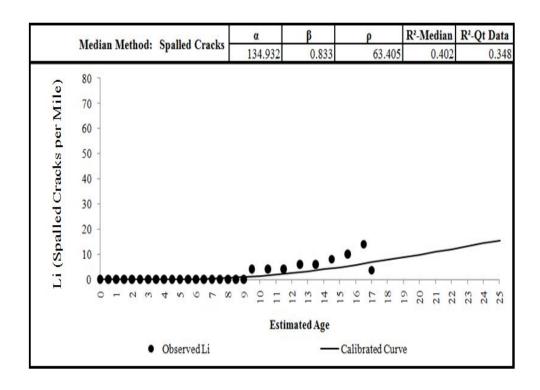
Statistical ParameterLiMean9.73Standard Deviation45.73Median0Minimum0Maximum19801st Quartile03rd Quartile2Frequency of Maximum1

Observed Li
(Spalled Cracks per Mile)

Li Statistical Parameters



Histogram for Spalled Cracks Li



Recalibrated CRCP Spalled Cracks Performance Model

In the recalibrated model, spalled cracks develop around an age of 9 years.

Alpha = 134.932

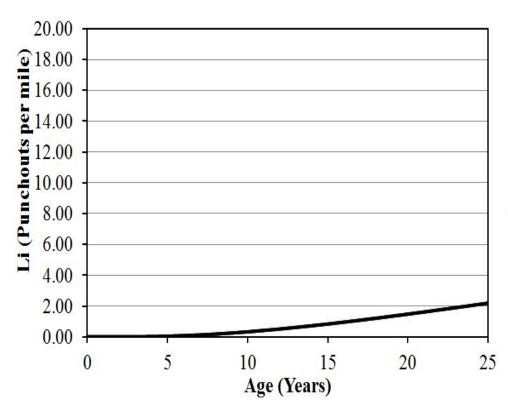
Beta = 0.833

Rho = 63.405

Expert's Feedback

According to expert's feedback, the recalibrated spalled cracks curve is the most representative model and shows the slow appearance of this distress.

Punchouts



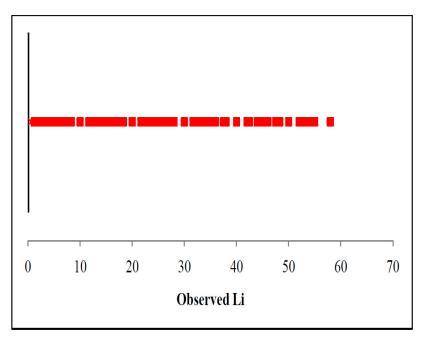
Current Punchouts Model

Punchouts develop around an age of 9 years.

Alpha =
$$101.517$$

Beta =
$$0.438$$

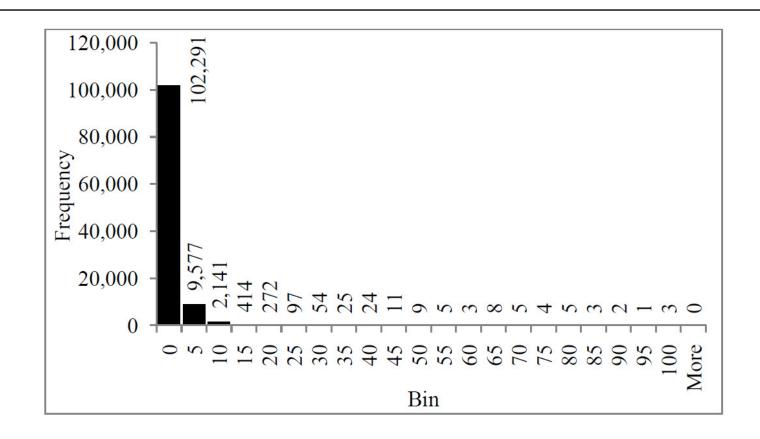
$$Rho = 538.126$$



Statistical Analysis for Punchouts

Statistical Parameter	Li
Mean	0.54
Standard Deviation	2.57
Median	0
Minimum	0
Maximum	100
1st Quartile	0
3rd Quartile	0
Frequency of Maximum	2

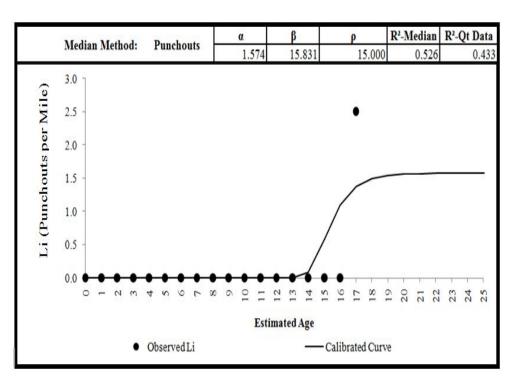
Observed Li
(Punchouts per Mile)



Histogram for Punchouts Li

Constraints

- The alpha of the punchouts performance curve was constrained to 2. Given that punchouts are a serious structural distress and that they need to be addressed quickly, the performance curve limit the maximum number of acceptable punchouts to 2.
- The beta parameter was constrained to 50.
- The rho parameter was unconstrained.



Recalibrated CRCP Punchouts Performance Model

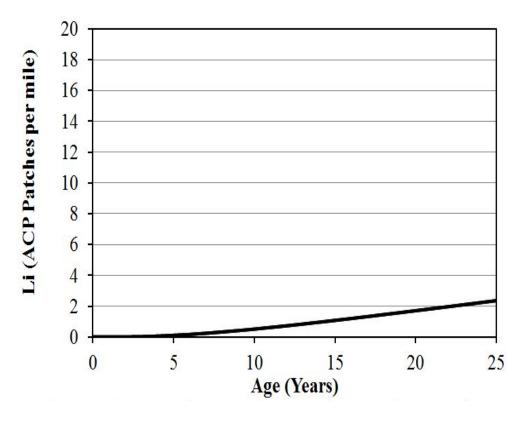
In the recalibrated model, punchouts develop around an age of 14 years.

Alpha = 1.574

Beta = 15.831

Rho = 15.000

ACP Patches



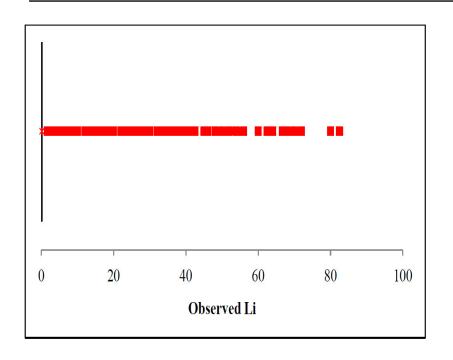
Recalibration of CRCP Distress Performance Models- ACP Patches

ACP Patches develop around an age of 8 years.

Alpha = 94.476

Beta = 0.375

Rho = 824.139

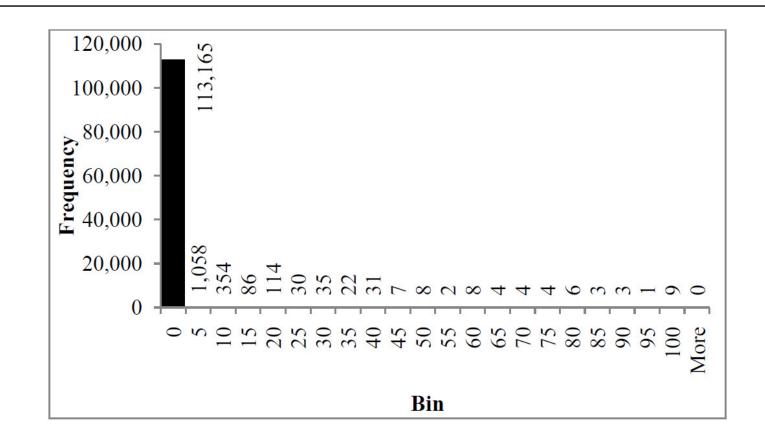


Statistical Analysis for ACP Patches

Statistical Parameter	Li
Mean	0.14
Standard Deviation	2.08
Median	0
Minimum	0
Maximum	100
1st Quartile	0
3rd Quartile	0
Frequency of Maximum	8

Observed Li

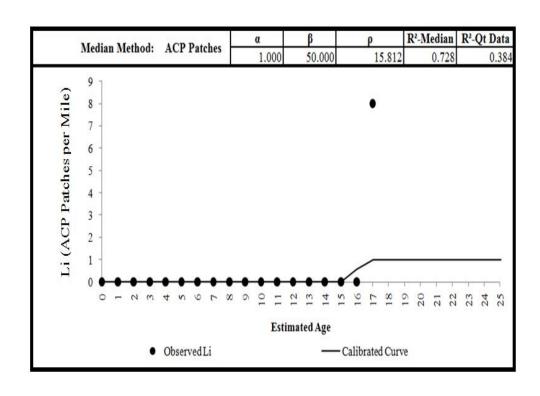
(ACP Patches per Mile)



Histogram for AC Patches Li

Constraints

- The alpha of the ACP patches performance curve was constrained to 1 since according to the statistical analysis performed this distress is not very common in CRC pavements.
- The beta parameter was constrained to 50.
- The rho parameter was unconstrained.



Recalibrated CRCP ACP Patches Performance Model

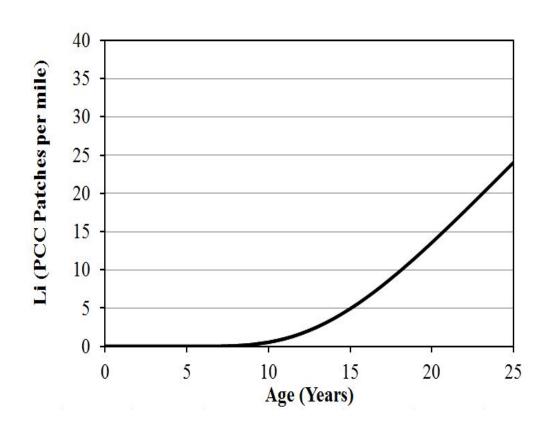
In the recalibrated model, ACP Patches develop around an age of 15 years.

$$Alpha = 1.000$$

Beta =
$$50.000$$

$$Rho = 15.812$$

PCC Patches



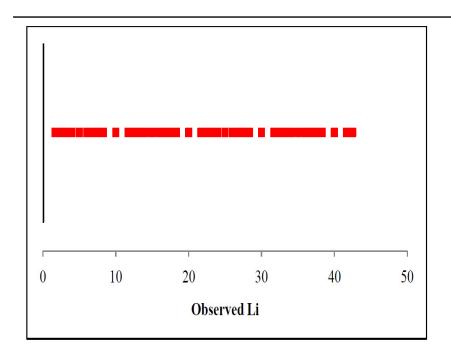
Recalibration of CRCP Distress <u>Performance Models- PCC Patches</u>

PCC Patches develop around an age of 10 years.

Alpha = 146.000

Beta = 1.234

Rho = 40.320

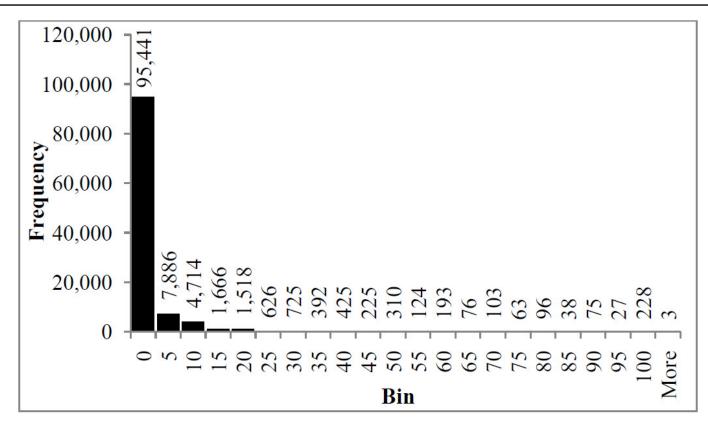


Statistical Analysis for PCC Patches

Statistical Parameter	Li
Mean	2.41
Standard Deviation	9.25
Median	0
Minimum	0
Maximum	205
1st Quartile	0
3rd Quartile	0
Frequency of Maximum	1

Observed Li
(PCC Patches per Mile)

Recommended Statewide Curve, Median Method.

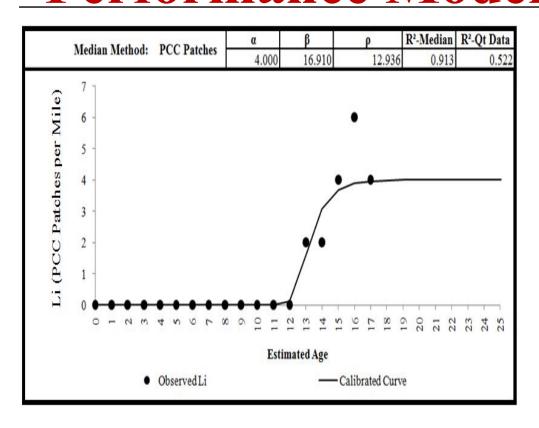


Histogram for PCC Patches Li

Observed Li for PCC Patches

Constraints

- According to expert's feedback, the alpha of the PCC patches performance curve was suggested to be constrained at 4
- The beta parameter was constrained to 50.
- The rho parameter was unconstrained.



Recalibrated CRCP PCC Patches Performance Model

In the recalibrated model, PCC Patches develop around an age of 12 years.

Alpha = 4.000

Beta = 16.910

Rho = 12.936

Summary of Recalibrated CRCP Distress Performance Models

CRCP	Re-Calibrated Statewide Performance Curve				
Distress	α	β	ρ	R ² -Median	R ² -Quartile
Spalled Cracks	134.932	0.833	63.405	0.402	0.348
Punchouts	1.574	15.83	15.000	0.526	0.433
ACP Patches	1.000	50.000	15.812	0.728	0.384
PCC Patches	4.000	16.910	12.936	0.913	0.522

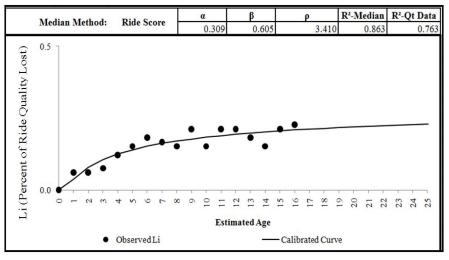
Ride Score

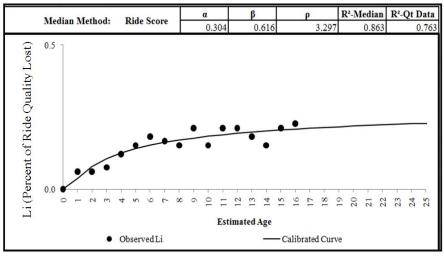
Recalibration of Ride Score Performance Curve

The following steps outline the process followed to recalibrate the ride score curves:

- a) The traffic level was classified into Low, Medium and High.
- b) According to the traffic level, the percent of ride quality lost (Li) was obtained using the following equation.

$$L_i = \frac{4.8 - RS}{4.8 - RS_{\min}}$$





Recalibration of Ride Score Performance Curve

Recalibrated Performance Curve (Unconstrained)

Recalibrated Performance Curve (Constrained)

Ride Score Performance Curve Parameters

The coefficients obtained for the recalibrated statewide CRCP ride performance curves are:

Method	α	β	ρ	R ² -Median	R ² -Quartile
Unconstrained	0.309	0.61	3.41	0.863	0.763
Constrained	0.304	0.62	3.3	0.863	0.763

Unconstrained Ride Li performance curve is proposed to represent the performance of pavement ride quality.

Conclusions

Conclusions

- 1. PMIS raw data from 1993-2010 show a large amount of records with no distresses. This situation reflects the importance of pavement sections where CRCP are located that demands immediate repair from TxDOT.
- 2. The lack of distress data specially at a later deterioration stage makes it challenging to develop performance curves to forecast distresses.

Conclusions

- 3. The recalibrated distress performance curves represent an improvement when compared to the current distress performance curves.
- 4. Alpha and Rho values could be further adjusted based on local experience at each District.

CRCP	Re-Calibrated Statewide Performance Curve				
Distress	α	β	ρ	R ² -Median	R ² -Quartile
Spalled Cracks	134.932	0.833	63.405	0.402	0.348
Punchouts	1.574	15.83	15.000	0.526	0.433
ACP Patches	1.000	50.000	15.812	0.728	0.384
PCC Patches	4.000	16.910	12.936	0.913	0.522

THANKS!

Carlos M. Chang, Ph.D., P.E. cchangalbitres2@utep.edu

